
Pepsi 2.0 Unpacking

Luca D’Amico
h8ps://www.lucadamico.dev

21-Aug-2023

https://www.lucadamico.dev/

Summary
Abstract .. 3

Environment And Tools ... 4

Ini7al Analysis .. 5

OSINT .. 5

High Detec1on Rate on Virus Total .. 7

Packer Detec1on ... 7

Unpacking .. 9

How Pepsi 2.0 Works? ... 9

Dumping: Method A - Manual Fix ... 16

Dumping: Method B - Automa1c .. 18

Dumping: Method C - Dumping Unpacked File From Temporary Memory ... 19

Conclusion ... 23

Credits ... 23

Abstract

This document is dedicated to the analysis and unpacking of Pepsi 2.0: a packer from
the underground scene about which very li>le public informa?on is available.

As described below, this packer has some limita?ons and various problems, but uses
some interes?ng techniques.

The examined binary was extracted from the unpackme collec?on of tuts4you forum
(h>ps://forum.tuts4you.com/files/file/1314-tuts-4-you-unpackme-collec?on-2016),
it is therefore available for free and legally.

Environment And Tools

Pepsi analysis was performed on a virtual machine running Windows XP SP3.
The following tools were used:

• PEiD, DIE & CFF Explorer: to obtain informa?on about the binary.
• x32dbg & Scylla: debugging and unpacking.
• HxD: patching to the dump to fix the header applying the first proposed

method.
• Lord PE: to fix the dump using the third proposed method.

The unpackme has the following SHA256:
79288c042048afd61d3ddec9a75b8bedf1830adfc015c873d676ff4782d2a339

Ini7al Analysis

In this sec?on we will describe various analyses carried out on the binary to obtain
useful informa?on.

OSINT

We don't have much informa?on about this packer. By doing a targeted search on
Google using the keywords “Pepsi” “Slick” and “packer”, the only significant
reference comes from a Cyber Security forum in Romanian sent by the creator of
Pepsi and da?ng back to November 22, 2007, with the ?tle “Pepsi Packer v2”:

Transla?ng the post with Google Translate we get:

“I improved the compression (also LZO but another algorithm) and the stub is made
in assembly and contained in the executable.”

The provided link at the end of the post is unfortunately no longer accessible, but by
doing a new search on Google limi?ng the results to the forum in ques?on (using the
keyword site:h>ps://rsdorums.com/), we can also find the related post that
adver?ses the first version of the packer, ?tled “Pepsi Packer v1”:

Again, using Google Translate, the transla?on is as follows:

“This is my first aAempt at a packer, the construcDon is original, but a bit out of the
ordinary, I’d say :)

The raDo is not extraordinary (LZO compression and big stub) but for example you
can first compress the file with UPX (it's the only one I guarantee that works)

It has some limitaDons: the file must have the ImageBase at 0x400000 and the
SizeoOfImage must not exceed 0x1FF000 (just try)

and someDmes it does not select the correct icon for the resulDng file, but it can be
changed with ResHack
Download: …

Considering that it is the first version, I expect some bugs, so my advice is to test the
file aZer packaging”

This document examines the V2 version of Pepsi, but I s?ll thought it would be
interes?ng to add this informa?on about the V1 as these issues are s?ll present.

One last curiosity about SlicK, the author of Pepsi, can be obtained by looking at his
profile on the forum:

Apparently, he is the former admin of this forum, and he was last logged in on
November 12, 2011. I hope he is fine and that he will read this paper one day 😊.

High Detec/on Rate on Virus Total

This packer has a very high detec?on rate on Virus Total:

57 an?virus sohwares detect it as malware. VT assigned the following name to the
possible threat: trojan.barys/backdoorx.

While it's possible that the techniques used by the packer could cause false
posi?ves, it's also likely that Pepsi was employed (not by its original author) over
?me to hide some malware.

Packer Detec/on

Pepsi is completely invisible to the most notorious Packer Detectors.
Detect It Easy only detects that the binary was wri>en using MASM:

PEiD detects nothing:

A quick way to detect the presence of Pepsi is to verify that there is one sec?on
called “.pepsi”. In this screenshot this verifica?on was done using CFF Explorer:

Also, it seems that Pepsi is unable to keep the original icon of the programs it
compresses. The final binaries have no icon un?l they are unpacked.

Unpacking

In this sec?on we will a>ack the binary, debugging and studying Pepsi's run?me
behavior and finally extrac?ng the original unpacked binary.

How Pepsi 2.0 Works?

Let’s load pepsi.exe in x32dbg and reach the EntryPoint:

As you can see, the current module handle is obtained by passing 0 (NULL) to the
GetModuleHandleA API. The eax register will now contain the value 0x400000
(where the executable resides in memory). Various informa?on from the header is
then retrieved and saved. To make this part easier to understand, I assigned
meaningful names to the various memory addresses and commented out the
disassembly:

At this point we find a call to VirtualAlloc, at the address 0x41917D, which will
allocate a por?on of memory as large as the virtual size of the “.pepsi” segment, in
this case 0x18000.

We con?nue by analyzing the following por?on of the disassembly:

If the memory alloca?on fails, the program will terminate by calling ExitProcess.
Otherwise, the star?ng address of the newly allocated memory (obviously contained
in the eax register) will be saved in [0x419118].
We also no?ce how this data is pushed onto the stack and used as a parameter in
the call at the address 0x4191AB.
Before con?nuing, let's give meaningful names to the addresses to make the
disassembly easier to understand:

By looking at the parameters passed to this call we can already imagine what will
happen.
Indeed, we execute the func?on without entering it and then we have a look, in the
memory dump window, the por?on of memory previously reserved with the
VirtualAlloc (which starts at the address saved in [0x419118], in this case 0x330000,
which in turn we have renamed to "reserved_space_for_unpacking "):

This memory has been filled with an executable! We can already assume that this is
the unpacked binary, but to be sure we need to con?nue our analysis.

Let’s con?nue:

We find another check which, in case of an error, forces the program to exit with the
usual ExitProcess. Otherwise, if there are no problems, the memory address where
the new executable resides is pushed onto the stack to be passed as a parameter to
the func?on called at 0x4191C6.

This ?me we enter this call by clicking on Step Into.
We will arrive here:

We know, as we have just said, that the address where the new executable (probably
unpacked) resides had been passed as a parameter to this func?on, so it is located at
[ebp+8]. The mov located at 0x419296 moves that address into the edi register. The
instruc?ons that follow first retrieve the PE header address ([edi+3C]) and
immediately aher that the RVA of the entry point ([edi+28]). In [419104] there is the
address of the Pepsi imagebase (0x400000), and the add instruc?on (at 0x41929F)
adds this address to the RVA of the entry point just recovered, to obtain its absolute
address. This address is saved in [419120] and probably used in the future to
perform the magic jump to pass control to the unpacked executable.

Don't be surprised if this doesn't currently make much sense since, as you may have
no?ced, the absolute address of the entry point we just computed is inside the
.pepsi segment of the packer. The most logical explana?on is that this memory area
will soon be overwri>en, probably with the data from the unpacked executable.
We'll find out shortly.

Immediately aherwards, at 0x4192AB the RVA of the ImportDirectory ([edi+80]) is
retrieved from the memory area where the unpacked executable resides and thanks
to the add opcode, it is added to its imagebase to obtain its absolute address. This is
necessary to build the IAT, in fact the following code does nothing but recover the
libraries and func?ons necessary for the unpacked program to func?on correctly,
using GetModuleHandleA, LoadLibraryA and GetProcAddress.
Please note: the IAT is rebuilt inside the memory where the unpacked executable
resides!

We figured out what this func?on does: calculate the absolute address of the entry
point and reconstruct the IAT.

Con?nuing the analysis, we can see that also in this case there is a check to ensure
that the just executed func?on has completed its task correctly. Immediately
aherwards, at the address 0x4191E3, another call is made passing as parameters the
address of the usual memory area where the unpacked executable resides (which
now also has a valid IAT) and the packer imagebase, i.e. 0x400000 (stored at
[419104]).

Let’s “Step Into” the func?on to analyze it:

From the parameters passed to the func?on, we know that the memory area where
the unpacked executable resides starts at the address contained in [ebp+C], while in
[ebp+8] we have the imagebase of the Pepsi packer we are analyzing.
Therefore, before calling VirtualProtect, we will have the value 0x400080 in the esi
register (address of the PE header of the packer) and in ebx the value 0x3300B8
(address of the PE header of the unpacked binary).

The VirtualProtect therefore has the task of changing the memory access protec?on
star?ng from address 0x400080 which thanks to the parameter 0x4
(PAGE_READWRITE) will now be modifiable.

The edx registry is loaded with the size of the Resource Directory of the unpacked
executable ([ebx+8C]). This value is wri>en to the Pepsi header ([esi+8C]). The edx
register is now loaded with the VA of the Resource Directory, s?ll from the unpacked
executable ([ebx+88]) and also in this case this value is overwri>en to the one
present in the Pepsi header ([edi+88]).

So, this func?on just copies the Resource Directory details (size and virtual address)
from the header of the unpacked binary, overwri?ng those present in the header of
the packer with them.

Once we exit this call, we will immediately find another one:

Thanks to the meaningful names that we have given to the memory addresses, the
parameters that are passed to this func?on is easy now to understand.

The RVA of the .pepsi segment (0x1000) is added to the start address of the memory
where the unpacked executable resides. Immediately aherwards it is also subtracted
from the size of its own segment (stored at [41911C]): so now at [41911C] there will
be the value 0x17000, which is the first to be pushed into the stack.
The second value to be pushed is the star?ng address of the memory where the
unpacked executable resides with the previous addi?on of 0x1000: probably the
author of the packer is trying to reference the first segment aher the header of the
unpacked executable!
The third value pushed is the VA of the .pepsi segment.
With these details, we can already hypothesize what will happen as soon as we enter
this call: the .pepsi segment of the packer will be overwri>en with the data of the
unpacked executable star?ng from 0x1000.

Let's find out if we're right by entering the func?on:

PERFECT! We are right! The cld opcode sets the forward direc?on of the copy. In the
esi register we have the address 0x331000, which is the first segment of the
unpacked executable. The value 0x401000, that is the VA of the .pepsi segment of
the packer, is moved to the edi register. In ecx we have 0x17000, which is the size of
the data to copy. The "rep movsw" opcode starts the copy.

Once out of this func?on we can say that we have clearer ideas: the unpacked
executable with the rebuilt IAT has been copied to the .pepsi segment and the
packer header has been suitably modified to have the correct Resource Directory
data in rela?on to the original executable!

Once out of this func?on, there is very li>le leh to analyze:

We have two calls, respec?vely to RtlZeroMemory and VirtualFree which do nothing
but remove whatever trace of the unpacked executable from memory (smart
huh?!😅), followed by a call to [419120].
We already know that at [419120] there is the absolute address of the entry point
calculated previously: this call does nothing but pass the control to the unpacked
executable (that now lives in the .pepsi segment)!
In fact, once we enter this call we are here:

We have arrived at the OEP (original entry point)!! Now we can dump with Scylla.

Since there will be difficul?es, related to the configura?on of Scylla, I decided to
write three separate sub-chapters about dumping, to illustrate all three possibili?es.

Dumping: Method A - Manual Fix

Once arrived at the OEP, let’s open Scylla (just click the bu>on with an 'S' icon from
the x32dbg toolbar), enter the address of the OEP and click on "IAT Autosearch". We
choose "no" when we are asked to use the advanced search method. We end up
with this configura?on:

Perfect, let's click on “Dump” and then on “Fix Dump”.

Let's try to run our unpacked program and…. IT DOES NOT WORK!!

Why is it not working? The answer is quite simple: in the standard configura?on of
Scylla, the dump header is copied from the binary present on the disk and not from
the one in memory. If you recall the Pepsi header was patched when the Resource

Directory size and VA values were changed! Our dump therefore does not have these
updated values and we must proceed by changing them manually.
The fastest way is to open our dump (the one with the IAT fixed of course) in a hex
editor like HxD and go to the offset where the data rela?ng to the size and VA of the
resource directory reside.
In our case we will have the VA of the Resource Directory at 0x109 and its size at
0x10C.
To obtain the correct values, restart the debugger and set a breakpoint where the
modifica?on of these data takes place, i.e.:

1) 0x41927A to get the size of the Resource Directory
2) 0x419286 to get the VA of the Resource Directory

So, we get 9D9C as size and E000 as VA.

Let's proceed by patching the binary:

Let's save our patch and no?ce that now the executable also has an icon:

Let's run it and everything works! The packer has been removed:

Dumping: Method B - Automa/c

By the first method we manually patched the dump header to fix the Resource
Directory values, now let's see how to properly configure Scylla to have a perfect
dump without having to change anything.

Let's go back to the OEP and open Scylla, configure it exactly as we did previously,
but before proceeding with the Dump, click on Misc and then on Op?ons. From the
window that will open, remove the check mark from "Use PE header from disk":

Con?nue by dumping regularly and clicking on “Fix Dump” to get a 100% working
unpacked executable!

Dumping: Method C - Dumping Unpacked File From Temporary
Memory

This method is a bit more complicated than the ones discussed above, but I wanted
to add it as I find it interes?ng.
During the analysis we discovered that for almost the en?re execu?on of the packer
the unpacked file is present in a temporary memory area and that aher being copied
to the .pepsi segment, it is deleted.
Also, we discovered that a func?on adds a valid IAT to the unpacked file located in
this memory area.

We can dump this memory area by seyng a breakpoint from the debugger just
before it is overwri>en, i.e., where the call to RtlZeroMemory takes place:

We are stopped just before the cleanup of this memory area.
Knowing that the address in ques?on was the last one to be pushed, we can reach it
in the Memory Map by right-clicking it on the related stack view window and
choosing "Follow DWORD in Current Dump":

And immediately aherwards from the hex view, let’s right-click and chose "Follow In
Memory Map":

We will find ourselves on the Memory Map tab with the relevant memory sec?on
that interests us already selected. We can proceed by right-clicking and choosing
“Dump Memory to File”:

We now have the unpacked file pulled from this temporary memory sec?on, which
also has a valid IAT, but there's a catch: the executable s?ll can't run because it's in a
memory-mapped state. We can check by opening it with CFF:

As we can see all the sec?ons are misaligned.

To fix this, we need to realign all the sec?ons so that the binary can be loaded
correctly by the Windows executable loader. This is done automa?cally by Scylla and
is called "unmapping the dump". We can proceed manually or with help of a tool
called Lord PE.

Let’s launch Lord PE, click on op?ons, and put the check mark on the "Dumpfix"
item:

Now click on “Rebuild PE” and choose our dumped binary. We confirm by clicking on
OK and we will have our executable realigned and fully func?onal!

We can verify that the various sec?ons are now aligned correctly using CFF:

Everything is aligned correctly.

Conclusion

We have completed the analysis of this packer and documented three different
methods of unpacking.
In summary, Pepsi does the following:

1) An area of memory is allocated for temporary use and the unpacked
executable is extracted inside it (without the IAT, at the moment)

2) With the informa?on contained in this memory area, the address of the OEP is
calculated and temporarily saved. The IAT is also created and wri>en to this
memory area.

3) The Resource Directory informa?on (VA and size) are extracted from the
header of the unpacked executable and wri>en to the Pepsi header.

4) The unpacked executable (star?ng from 0x1000) is copied to the .pepsi
segment.

5) The memory area where the unpacked executable resides is cleaned and
freed.

6) The OEP is called, and the execu?on of the original program begins.

Considering this is SlicK's first a>empt at crea?ng a packer, I can only congratulate
him 😁

Credits

As always, I would like to thank the authors of the tools used in the document.
Special thanks go to SlicK for crea?ng Pepsi and Xylitol for crea?ng this unpackme.

Thanks also goes to you who read this paper! I hope you have enjoyed the analysis :)

If you have enjoyed this document and want to read more about unpacking,
malware analysis and reverse engineering, visit my site:
h>ps://www.lucadamico.dev/

Luca

https://www.lucadamico.dev/

