Pepsi 2.0 Unpacking

A\

UnpackMe: Pepsi packer v2 - www.tuts4you.com

UnpacklMe by Xylitol for tuts4you
Packed by Pepsi Packer v2
Author of the packer: Slick

Simple rule:
Manual unpacking only !

N4

Luca D’Amico
https://www.lucadamico.dev
21-Aug-2023



https://www.lucadamico.dev/

Summary

Y X 1 ' o RN 3
1Y T T T L=tk 2V Lo e o K 4
T Tn o L ] ) 5
L0 2] | 5
High Detection Rate on Virus TOtal ........cccceeiiiiiiiiiinnnnniiiiiiiiiiiesmmiiiiimssmsiisssmssiissssssssssnn 7
L= Lol (=T g T=T =T ot o ' Y 7
(12T To Lol ([ o 9
HOW PePSi 2.0 WOTKS? .. ciiiiiiieuniiiiiiiiiiiininniiieiiiiiiesssssisieeiiiimssssssssssesiimsssssssssssssssssssssssssssssssssssssssssssssssss 9
Dumping: Method A - ManUal FiX......cceeeeeiiiiiiiiiiienmniiiiiiiiiieesmiiessmsiissssssssiisesssssssss 16
(DT070 g ToT 1o V=30 \V T=1d o ToTo Il 2 JEANTE o] 1 4 - 1 o ol 18
Dumping: Method C - Dumping Unpacked File From Temporary Memory........ccccceeeirrenncennennnceneennnenns 19
(60T Tl 17X [ 23

G OOILS aveeeeeeeeeeeeeeeeereeeneseessessessessesssssssossssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnnssns 23



Abstract

This document is dedicated to the analysis and unpacking of Pepsi 2.0: a packer from
the underground scene about which very little public information is available.

As described below, this packer has some limitations and various problems, but uses
some interesting techniques.

The examined binary was extracted from the unpackme collection of tuts4you forum
(https://forum.tutsdyou.com/files/file/1314-tuts-4-you-unpackme-collection-2016),
it is therefore available for free and legally.



Environment And Tools

Pepsi analysis was performed on a virtual machine running Windows XP SP3.
The following tools were used:

e PEiD, DIE & CFF Explorer: to obtain information about the binary.

e x32dbg & Scylla: debugging and unpacking.

e HxD: patching to the dump to fix the header applying the first proposed
method.

e Lord PE: to fix the dump using the third proposed method.

The unpackme has the following SHA256:
79288c042048afd61d3ddec9a75b8bedf1830adfc015c873d676ff4782d2a339



Initial Analysis

In this section we will describe various analyses carried out on the binary to obtain
useful information.

OSINT

We don't have much information about this packer. By doing a targeted search on
Google using the keywords “Pepsi” “Slick” and “packer”, the only significant
reference comes from a Cyber Security forum in Romanian sent by the creator of
Pepsi and dating back to November 22, 2007, with the title “Pepsi Packer v2”:

Posted November 22, 2007

Am imbunatatit compresia (tot LZO dar alt algoritm) iar stubul este facut in assembly si continut in executabil.
ITIETH >

v

Active Members

Translating the post with Google Translate we get:

“I improved the compression (also LZO but another algorithm) and the stub is made
in assembly and contained in the executable.”

The provided link at the end of the post is unfortunately no longer accessible, but by
doing a new search on Google limiting the results to the forum in question (using the
keyword site:https://rstforums.com/), we can also find the related post that
advertises the first version of the packer, titled “Pepsi Packer v1”:

Posted November 9, 2007

Asta e prima mea incercare la un packer, contructia e originala dar un pic cam din topor zic eu @

Ratio-ul nu e extraordinar(compresia LZO si stub mare) dar de exemplu puteti compresa fisierul cu UPX inainte(e singurul pt care garantez ca functioneaza)
Are cateva limitari: fisierul trebuie sa aiba ImageBase'ul la 0x400000 si SizeoOflmage nu trebuie sa depaseasca 0x1FF000 (just try)

iar uneori nu selecteaza iconita corecta pentru fisierul rezultat dar poate fi schimbata cu ResHack

‘ Download:

Avand in vedere ca e prima versiune ma astept la niste buguri asa ca sfatul meu e sa testati fiserul dupa packuire

Active Members
Server de Poison lvy inainte si dupa packuire:

P,

+

Again, using Google Translate, the translation is as follows:

“This is my first attempt at a packer, the construction is original, but a bit out of the
ordinary, I'd say :)



The ratio is not extraordinary (LZO compression and big stub) but for example you
can first compress the file with UPX (it's the only one | guarantee that works)

It has some limitations: the file must have the ImageBase at 0x400000 and the
SizeoOflImage must not exceed Ox1FF00O (just try)

and sometimes it does not select the correct icon for the resulting file, but it can be
changed with ResHack
Download: ...

Considering that it is the first version, | expect some bugs, so my advice is to test the
file after packaging”

This document examines the V2 version of Pepsi, but | still thought it would be
interesting to add this information about the V1 as these issues are still present.

One last curiosity about SlicK, the author of Pepsi, can be obtained by looking at his
profile on the forum:

About SlickK

Retired Administrator

Apparently, he is the former admin of this forum, and he was last logged in on
November 12, 2011. | hope he is fine and that he will read this paper one day .



High Detection Rate on Virus Total

This packer has a very high detection rate on Virus Total:

57 @ 57 security vendors and no sandboxes flagged this file as malicious (> Reanalyze = Similar +  More ~

7 79288c042048afd61d3ddec9a75b8bedf1830adfc015¢873d676ff4782d2a339 Size Last Analysis Date OO
UnpackMe.exe 36.50 KB 1 month ago EXE

peexe  spreader  runtime-modules  long-sleeps  direct-cpu-clock-access  idle

57 antivirus softwares detect it as malware. VT assigned the following name to the
possible threat: trojan.barys/backdoorx.

While it's possible that the techniques used by the packer could cause false

positives, it's also likely that Pepsi was employed (not by its original author) over
time to hide some malware.

Packer Detection

Pepsi is completely invisible to the most notorious Packer Detectors.
Detect It Easy only detects that the binary was written using MASM:

v PE32

Compiler: MASM(6.14.8444)[MMX2 support]

Linker: Microsoft Linker(5.12.8078)
Tool: masm32(8-11)

PEID detects nothing:

Entrypoint: 00019124 EP Section: | .text
File Offset: | 00008D24 First Bytes: |E8,00,00,00 | > |
Linker Info: 5,12 Subsystem: |Win32 GUI >
Nothing Found *

Multi Scan Task Viewer Options About | Exit |
v Stay on top ﬁ, _>,




A quick way to detect the presence of Pepsi is to verify that there is one section
called “.pepsi”. In this screenshot this verification was done using CFF Explorer:

MName Virtual Size Virtual Address | Raw Size Raw Address
Byte[8] Dword Dword Dword Dword

pepsi 00018000 00001000 000038891 00000200
Jext 00001000 00019000 00000600 00008C00

Also, it seems that Pepsi is unable to keep the original icon of the programs it
compresses. The final binaries have no icon until they are unpacked.



Unpacking

In this section we will attack the binary, debugging and studying Pepsi's runtime
behavior and finally extracting the original unpacked binary.

How Pepsi 2.0 Works?

Let’s load pepsi.exe in x32dbg and reach the EntryPoint:

00419124
00419129
0041912B
00419130
00419135
0041913BE
0041913E
00419144
004159147
00419140
00419150
00419156
0041915C
004191SF
00419165
00419168
0041916E
00419170
00419175
0041917E
00419170

8B3D
037F
81C7
8BS7
8915
8BS7
0315
8915
8BS7
8915
8BS7
8915

FF35S

6A 04
68 00100000

6A 00
EE EEO30000

EE 00000000
6A 00

E8 28040000
A2 04914100

04314100
3C
FE8000000
08
0C914100
0C
04914100
10914100
0C
08914100
10
14914100

0C914100

push

mov
mov
add
add
mov
mov
mov
add
mov
mov
mov
mov
mow
push
push

push

dword ptr
edi, dword
edi,dword
edi,F8
edx, dword
dword ptr
edx, dword
edx, dword
dword ptr
edx, dword
dword ptr
edx, dword
dword ptr
4

1000

call pepsi.419129

call <JIMP.&GetModuleHandl eA>

ds:[419104],eax
ptr ds:[419104]
ptr ds:[edi+3C]

ptr ds:[edi+8]
ds:[41910C], edx
ptr ds:[edi+C]
ptr ds:[419104]
ds:[419110], edx
ptr ds:[edi+C]
ds:[419108],edx
ptr ds:[edi+10]
ds:[419114],edx

push dword ptr ds:[41910C]

call <IMP.&virtualAlloc»

As you can see, the current module handle is obtained by passing 0 (NULL) to the
GetModuleHandleA API. The eax register will now contain the value 0x400000
(where the executable resides in memory). Various information from the header is
then retrieved and saved. To make this part easier to understand, | assigned
meaningful names to the various memory addresses and commented out the

disassembly:

—>e E8 00000000
e||00419129 6A 00
e (00419128 E8 28040000
e (00413130 A3 045914100
@ (00419135 8B3D 04914100
e (00419138 037F 3C
¢ ||0041913E 81C7 F8000000
e |(00419144 8B57 08
¢ 00415147 8915 0C914100
®||0041914D 8BS7 0C
e ||00419150 0315 04914100
¢ ||00419156 8915 10914100
e (|0041915C 8B57 0OC
e ||0041915F 8915 08914100
e (|00419165 8B57 10
®||00419168 8915 14914100
¢ (|0041916E 6A 04
e (00413170 68 00100000
®||00419175 FF35 0C914100
¢ (00419178 6A 00
e||0041917D ES EEO30000

call pepsi.419129

push o

call <IMP.&GetModuleHand]eA>
ds:[<imagebase>],eax
ptr ds:[<imagebasex>]
ptr ds:[edi+3C]

mov dword ptr
mov edi,dword
add edi,dword
add edi,Fs
mov edx, dword
mov dword ptr
mov edx, dword
add edx, dword
mov dword ptr
mov edx, dword
mov dword ptr
mov edx, dword
mov dword ptr
push 4

push 1000

ptr ds:[edi+8]

ds:[<virtualsize_pepsi>],edx

ptr ds:[edi+C]

ptr ds:[<imagebase>]

ds:[<virtualaddr_pepsix>],edx

ptr ds:[edi+C]
ds:[<rva_pepsi

ptr ds:[edi+10]

>],edx

ds:[<rawsize_pepsix>],edx

push dword ptr ds:[<virtualsize_pepsi>]

push 0

call <IMP.&virtualAllocs

call $o0

[edi+3c] = address of PE header
start of first section header (.pepsi)
[edi+8] = wirtual size of .pepsi

[edi+c] = RVA of .pepsi
RVA + imagebase = VA of .pepsi

[edi+c] = RvA of .pepsi
[edi+10] = SizeDfRawData

At this point we find a call to VirtualAlloc, at the address 0x41917D, which will
allocate a portion of memory as large as the virtual size of the “.pepsi” segment, in
this case 0x18000.




We continue by analyzing the following portion of the disassembly:

00419180
00419192
00419194
00419199
0041919F
004191AS
0041391AB

E8 EEO030000
0BCO

v 75 07

6A 00

EE C5030000
A2 18914100
6A 00

68 1C914100
FF35 18914100
FF35 14914100
FF35 10914100
EE C1l010000

or eax,eax

push 0O

push 0

push dword
push dword
push dword

jne pepsi.41918D

call <JIMP.&VirtualAlloc>

call <JMP.&ExitProcess>
mov dword ptr ds:[419118],eax

push pepsi.41911C
ptr ds
ptr ds
ptr ds

:[419118]
:[419114]
:[419110]

call pepsi.419371

If the memory allocation fails, the program will terminate by calling ExitProcess.
Otherwise, the starting address of the newly allocated memory (obviously contained
in the eax register) will be saved in [0x419118].

We also notice how this data is pushed onto the stack and used as a parameter in
the call at the address 0x4191AB.

Before continuing, let's give meaningful names to the addresses to make the
disassembly easier to understand:

e|0041317D ES EEO30000 call <JIMP.&virtualAllocs

e|0D419182 0BCO or eax,eax

e|00419184 v 75 07 jne pepsi.41918D

®| 00419186 6A 00 push 0

e|0D419188 ES C5030000 call <JMP.&ExitProcessx>

®|0041918D A3 18914100 mov dword ptr ds:[<reserved_space_for_unpacking>],eax
e|l00419192 6A 00 pUSh 0

e|00419194 68 1C914100 push pepsi.41911C

®|00419199 FF35 18914100 push dword ptr ds:[<reserved_space_for_unpacking>]
®|0041919F FF35 14914100 push dword ptr ds:[<rawsize_pepsi>]

e|[004191A5 FF35 10914100 push dword ptr ds:[<wvirtualaddr_pepsi>]

e|00D41914B ES C1010000 call pepsi.419371

By looking at the parameters passed to this call we can already imagine what will
happen.

Indeed, we execute the function without entering it and then we have a look, in the
memory dump window, the portion of memory previously reserved with the
VirtualAlloc (which starts at the address saved in [0x419118], in this case 0x330000,
which in turn we have renamed to "reserved _space_for_unpacking "):

00330000
00330010
00330020
00330030| 00 00 0O
00330040

03
00
00

00 00
00 00
00 0

04 00
40 00 00
00

oo
00
00
00

oo
00
00
00

00
00
00
00

00
00
00

00
00
00
00

00330050
00330060
00330070
00330080
00330030
003300A0

is program canno
t be run in DOS

mode..ccc$eccnnena
0 TE%D . %0f . %0% .
0GC*..0£f.B0t.X%0f.
vb¥, ;0f .R1Ch%0£.

This memory has been filled with an executable! We can already assume that this is
the unpacked binary, but to be sure we need to continue our analysis.




Let’s continue:

EE C1010000 call pepsi.419371
4191 0BCO or eax,eax
004191B2 vr74 0C | je pepsi.4191C0
4191B4 83F8 F8 cmp eax,FFFFFFF&
v| 74 07 je pepsi.4191C0
6A 00 push 0O
ES 92030000 call <JMP.&ExitProcessx>
*FF35 18914100 push dword ptr ds:[<reserved_space_for_unpacking>]
EE CS5000000 call pepsi.419290

We find another check which, in case of an error, forces the program to exit with the
usual ExitProcess. Otherwise, if there are no problems, the memory address where
the new executable resides is pushed onto the stack to be passed as a parameter to
the function called at 0x4191C6.

This time we enter this call by clicking on Step Into.
We will arrive here:

00419290 5§ 'push ebp
419291 SBEC mov ebp,esp

83C4 FC add esp,FFFFFFFC
8B7D 08 mov edi,dword ptr ss:[ebp+s]
037F 3C add edi,dword ptr ds:[edi+3C]
8BS7 28 mov edx,dword ptr ds:[edi+28]
0315 043914100 add edx,dword ptr ds:[419104]
8915 20914100 mov dword ptr ds:[419120],edx
8B97 80000000 mov edx,dword ptr ds:[ed1 g0]
0355 08 add edx,dword ptr ss:[ebp+&]
SBFA mov edi,edx
ES 80000000 jmp pepsi.41933B
BE 00000000 mov ebx,0
035D 08 add ebx,dword ptr ss:[ebp+&]
035F 0OC add ebx,dword ptr ds:[edi+C]
53 push ebx
ES 8C020000 call <IMP.&GetModuleHandleA>
0BCO or eax,eax
75 0C jne pepsi.41920C
53 push ebx
EE8 S8EO020000 call <JIMP.&LoadLibrarya>
0BCoO or eax,eax
75 02 jne pepsi.41920C
EB 72 imp pepsi.41934E

We know, as we have just said, that the address where the new executable (probably
unpacked) resides had been passed as a parameter to this function, so it is located at
[ebp+8]. The mov located at 0x419296 moves that address into the edi register. The
instructions that follow first retrieve the PE header address ([edi+3C]) and
immediately after that the RVA of the entry point ([edi+28]). In [419104] there is the
address of the Pepsi imagebase (0x400000), and the add instruction (at 0x41929F)
adds this address to the RVA of the entry point just recovered, to obtain its absolute
address. This address is saved in [419120] and probably used in the future to
perform the magic jump to pass control to the unpacked executable.



Don't be surprised if this doesn't currently make much sense since, as you may have
noticed, the absolute address of the entry point we just computed is inside the
.pepsi segment of the packer. The most logical explanation is that this memory area
will soon be overwritten, probably with the data from the unpacked executable.
We'll find out shortly.

Immediately afterwards, at 0x4192AB the RVA of the ImportDirectory ([edi+80]) is
retrieved from the memory area where the unpacked executable resides and thanks
to the add opcode, it is added to its imagebase to obtain its absolute address. This is
necessary to build the IAT, in fact the following code does nothing but recover the
libraries and functions necessary for the unpacked program to function correctly,
using GetModuleHandleA, LoadLibraryA and GetProcAddress.

Please note: the IAT is rebuilt inside the memory where the unpacked executable
resides!

We figured out what this function does: calculate the absolute address of the entry
point and reconstruct the IAT.

Continuing the analysis, we can see that also in this case there is a check to ensure
that the just executed function has completed its task correctly. Immediately
afterwards, at the address 0x4191E3, another call is made passing as parameters the
address of the usual memory area where the unpacked executable resides (which
now also has a valid IAT) and the packer imagebase, i.e. 0x400000 (stored at
[419104]).

004191CB 83F8 01 cmp eax,1
4 74 07 je pepsi.419107
6A 00 push
ES 7B030000 call <JMP.&ExitProcessx>
FF35 18914100 push dword ptr ds:[<reserved_space_for_unpacking>]
FF35 04914100 push dword ptr ds:[419104]
ES 63000000 call pepsi.41924B

Let’s “Step Into” the function to analyze it:



ES 08030000

8B92 8C000000
8996 8C000000
8B93 88000000

push ebp
mov ebp,esp
add esp,FFFFFFFC

mov esi,dword ptr ss:[ebp+g]
add esi,dword ptr ds:[e51 3C]
mov ebx,dword ptr ss:[ebp+C]
add ebx,dword ptr ds:[ebx+3C]
cmp dword ptr ds:[ebx+88],0

je pepsi.41928C

lTea eax,dword ptr ss:[ebp-4]
push eax

push 4

push &

push esi

call <IMP.&virtualProtects
mov edx,dword ptr ds:[ebx+aC]

mov dword ptr ds:[esi EC],gqx

mov edx, dword

ptr ds:[ep-

8996 33000000 mov dword ptr ds:[esi+ss],edx
C9 Teave
41928l C2 0800 EEeE S

From the parameters passed to the function, we know that the memory area where
the unpacked executable resides starts at the address contained in [ebp+C], while in
[ebp+8] we have the imagebase of the Pepsi packer we are analyzing.
Therefore, before calling VirtualProtect, we will have the value 0x400080 in the esi
register (address of the PE header of the packer) and in ebx the value 0x3300B8

(address of the PE header of the unpacked binary).

The VirtualProtect therefore has the task of changing the memory access protection
starting from address 0x400080 which thanks to the parameter 0x4
(PAGE_READWRITE) will now be modifiable.

The edx registry is loaded with the size of the Resource Directory of the unpacked
executable ([ebx+8C]). This value is written to the Pepsi header ([esi+8C]). The edx
register is now loaded with the VA of the Resource Directory, still from the unpacked
executable ([ebx+88]) and also in this case this value is overwritten to the one
present in the Pepsi header ([edi+88]).

So, this function just copies the Resource Directory details (size and virtual address)
from the header of the unpacked binary, overwriting those present in the header of
the packer with them.

Once we exit this call, we will immediately find another one:

8B1S 08914100
0115 183914100
2915 1C914100
FF35 1C914100
FF35 18914100
FF35 10914100
ES 46010000

mov edx,dword ptr ds:[<rva_pepsi>]
add dword ptr ds:[<reserved_space_for_unpacking>],edx
sub dword ptr ds:[41911C], edx

push dword ptr ds:[41911C]

push dword ptr ds:[<reserved_space_for_unpacking>]
push dword ptr ds:[<wvirtualaddr_pepsi>]

call pepsi.419357

Thanks to the meaningful names that we have given to the memory addresses, the
parameters that are passed to this function is easy now to understand.



The RVA of the .pepsi segment (0x1000) is added to the start address of the memory
where the unpacked executable resides. Immediately afterwards it is also subtracted
from the size of its own segment (stored at [41911C]): so now at [41911C] there will
be the value 0x17000, which is the first to be pushed into the stack.

The second value to be pushed is the starting address of the memory where the
unpacked executable resides with the previous addition of 0x1000: probably the
author of the packer is trying to reference the first segment after the header of the
unpacked executable!

The third value pushed is the VA of the .pepsi segment.

With these details, we can already hypothesize what will happen as soon as we enter
this call: the .pepsi segment of the packer will be overwritten with the data of the
unpacked executable starting from 0x1000.

Let's find out if we're right by entering the function:

00419357 cs push ebp
‘ S8BEC mov ebp,esp

56 push esi
57 push edi
FC cld
8B75 0OC mov esi,dword ptr ss:[ebp+C]
8B7D 08 mov edi,dword ptr ss:[ebp+s&]
8B4D 10 mov ecx,dword ptr ss:[ebp+10]
D1ES shr ecx,1
F366: A5 rep movsw
SF pop edi
SE pop esi
C9 Teave
Cc2 0Co0 ret

PERFECT! We are right! The cld opcode sets the forward direction of the copy. In the
esi register we have the address 0x331000, which is the first segment of the
unpacked executable. The value 0x401000, that is the VA of the .pepsi segment of
the packer, is moved to the edi register. In ecx we have 0x17000, which is the size of
the data to copy. The "rep movsw" opcode starts the copy.

Once out of this function we can say that we have clearer ideas: the unpacked
executable with the rebuilt IAT has been copied to the .pepsi segment and the
packer header has been suitably modified to have the correct Resource Directory
data in relation to the original executable!

Once out of this function, there is very little left to analyze:



00419211 2915 18914100 sub dword ptr ds:[<reserved_space_for_unpacking>],edx
00419217 FF35 0C914100 push dword ptr ds:[<virtualsize_pepsi>]

0041921C FF35 18914100 push dword ptr ds:[<reserved_space_for_unpacking=]
00419223 ES 42030000 call <JIMP.&Rt1ZeroMemory>

00419228 68 00400000 push 4000

0041922C FF35 0C3914100 push dword ptr ds:[<virtualsize_pepsi>]

00419233 FF35 18914100 push dword ptr ds:[<reserved_space_for_unpacking=]
00419239 ES 38030000 call <JIMP.&VirtualFreex

0041923E FF15 20914100 call dword ptr ds:[419120]

00419244 6A 00 push 0

00419246 ES 07030000 call <JMP.&ExitProcessx>

We have two calls, respectively to RtlIZeroMemory and VirtualFree which do nothing
but remove whatever trace of the unpacked executable from memory (smart
huh?!©), followed by a call to [419120].

We already know that at [419120] there is the absolute address of the entry point
calculated previously: this call does nothing but pass the control to the unpacked
executable (that now lives in the .pepsi segment)!

In fact, once we enter this call we are here:

004013A8 56 push esi

004013 A9 6A DA push A

004013 AB 68 F4010000 push 1F4

004013B0 FF35 &6D&34000 push dword ptr ds:[40636D]
004013B6 ES 97000000 call <JIMP.&FindrResourceA>
004013BB 50 push eax

004013BC 50 push eax

004013BD FF35 &6D&34000 push dword ptr ds:[406360]
004013C3 ES B4000000 call <IMP.&SizeofResourcex
004013C8 A3 71634000 mov dword ptr ds:[406371],eax
004013CD £8 pop eax

004013CE 50 push eax

We have arrived at the OEP (original entry point)!! Now we can dump with Scylla.

Since there will be difficulties, related to the configuration of Scylla, | decided to
write three separate sub-chapters about dumping, to illustrate all three possibilities.




Dumping: Method A - Manual Fix

Once arrived at the OEP, let’s open Scylla (just click the button with an 'S' icon from
the x32dbg toolbar), enter the address of the OEP and click on "IAT Autosearch". We
choose "no" when we are asked to use the advanced search method. We end up
with this configuration:

Scylla xB6 v0.9.8 E)oX)

File Imports Trace Misc Help

Attach to an active process

0832 - pepsi.exe - C:\Documents and Settings\User\Desktop\pepsi.exe w | | Pick DLL

Imports

« qdi32.dll {11) FThunk: 00005000
v kernel32.dll {(17) FThunk: 00005030
« user32.dll (8) FThunk: 00005078
« winmm.dll {9) FThunk: 0000509C

AR R A

[ Show Invalid ] [Show Suspect ]

IAT Info Actions Dump
OEP | 004013A8 IAT Autosearch : [ Dump ] [ PE Rebuild ]
VA 00405000
Get Imports [ i J
Size | 00000OCO — Fix Dump
Log
IAT Search Adv: Found 54 (0x36) possible IAT entries. -~

IAT Search Adv: Possible IAT first 00405000 last 00419120 entry.

IAT Search Adv: IAT VA 00405000 RYA 00005000 Size 0x14124 (82212)
IAT Search MNor: IAT YA 00405000 RYA 00005000 Size 0x00C0 (192)
IAT parsing finished, found 45 valid APIs, missed 0 APIs

DIRECT IMPORTS - Found O possible direct imports with 0 unigue APIs!

Imports: 45 « Invalid: 0 Imagebase: 00400000 pepsi.exe %
Perfect, let's click on “Dump” and then on “Fix Dump”.

Let's try to run our unpacked program and.... IT DOES NOT WORK!!

Why is it not working? The answer is quite simple: in the standard configuration of

Scylla, the dump header is copied from the binary present on the disk and not from
the one in memory. If you recall the Pepsi header was patched when the Resource



Directory size and VA values were changed! Our dump therefore does not have these
updated values and we must proceed by changing them manually.
The fastest way is to open our dump (the one with the IAT fixed of course) in a hex
editor like HxD and go to the offset where the data relating to the size and VA of the
resource directory reside.
In our case we will have the VA of the Resource Directory at 0x109 and its size at
0x10C.
To obtain the correct values, restart the debugger and set a breakpoint where the
modification of these data takes place, i.e.:

1) Ox41927A to get the size of the Resource Directory

2) 0x419286 to get the VA of the Resource Directory

So, we get 9D9C as size and E00O0 as VA.

Let's proceed by patching the binary:

D0000DCO 04 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00 weunvennsennnnns
000000DOo 00 EO 01 OO0 OO0 02 00 OO 0O OO OO0 0O 02 00 00 0O e e
DO000DDED 00 00 10 00 00 10 00 00 00 00 10 00 00 10 00 00  weuuvennsennnsns
0000D00FOD 00 OO0 00 OO 10 0O 0O OO OO OO0 00 OO0 00 00 00 00 e eeeeenssnnnnns
00000100 C4 A0 01 00 64 0O 00 OO 00 EO 00 00 SC 9D po 00 A ..d....&..c.l.
00000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  weuuvennsennnnns
00000120 00 OO0 00 OO OO0 OO0 00 OO 00 OO0 0O 00 00 00 0D 00 ieeeeeennnnnnnns
00000130 00 OO0 0O OO0 00 OO OO0 OO0 DO OO0 00 OO0 00 OO0 00 00 e eeesnssssnnnas

Let's save our patch and notice that now the executable also has an icon:

Let's run it and everything works! The packer has been removed:

UnpackMe: Pepsi packer ¥2 - www.tuts4you.com

UnpackMe by Xylitol for tutsdyou
Packed by Pepsi Packer v2
Author of the packer: SlickK

Simple rule:

Manual unpacking only !




Dumping: Method B - Automatic

By the first method we manually patched the dump header to fix the Resource
Directory values, now let's see how to properly configure Scylla to have a perfect
dump without having to change anything.

Let's go back to the OEP and open Scylla, configure it exactly as we did previously,
but before proceeding with the Dump, click on Misc and then on Options. From the
window that will open, remove the check mark from "Use PE header from disk":

Misc
[ Juse PE header from disk

—y

Continue by dumping regularly and clicking on “Fix Dump” to get a 100% working
unpacked executable!



Dumping: Method C - Dumping Unpacked File From Temporary
Memory

This method is a bit more complicated than the ones discussed above, but | wanted
to add it as | find it interesting.

During the analysis we discovered that for almost the entire execution of the packer
the unpacked file is present in a temporary memory area and that after being copied
to the .pepsi segment, it is deleted.

Also, we discovered that a function adds a valid IAT to the unpacked file located in
this memory area.

We can dump this memory area by setting a breakpoint from the debugger just
before it is overwritten, i.e., where the call to RtlZeroMemory takes place:

00419217 FF35 0C3914100 push dword ptr ds:[<virtualsi:

00419210 FF35 185914100 push dword ptr ds:[<reserved_:
ES 42030000 call <IMP.&Rt1ZeroMemory>

00419228 68 00400000 push 4000

00419220 FF35 0C3914100 push dword ptr ds:[<virtualsi:

We are stopped just before the cleanup of this memory area.

Knowing that the address in question was the last one to be pushed, we can reach it
in the Memory Map by right-clicking it on the related stack view window and
choosing "Follow DWORD in Current Dump":

T WWlew W W ey

ebx:"PE" y'y Follow in Dump

i Follow DWORD in Current Dump k
[

* Follow in Memory Map

VI
ﬁ Follow DWORD in Disassembler Enter 00 00330
y'y Follow DWORD in Dump » 18000 000:
1000 pep:
& watch DWORD 8891 000!
Edit columns... 30000 oo
003 3vuouy

0012FFAS | 00018000

And immediately afterwards from the hex view, let’s right-click and chose "Follow In
Memory Map":



uu

P g Follow in Disassembler

. Follow in Memory Map
7 Label Current Address :

00
00
@ watch DWORD 00
& ” Modify Value Space
@ Breakpoint 4
o Find Pattern... Ctrl+B
# Find References Ctr+R
m Sync with expression S
## Allocate Memory D00
& Goto »
8% Hex 4
IMP.&Rt12Z¢ Az Text »
2 Integer ’
ext:0041¢ : Float »
1 .
Myoump1 L Address
idress |E i Disassembly
13230000 | 4D
)330010|B8 00 00 00|00 00 00 00|40 00 00 O

We will find ourselves on the Memory Map tab with the relevant memory section
that interests us already selected. We can proceed by right-clicking and choosing
“Dump Memory to File”:

Uuscvuuvuw
003230000
00350000
00360000
00370000
00371000
00400000

vyuvuunuuu

00018000
00001000
00001000
00001000
0007FOO0O0
00001000

US> I

l \wEviLoynarl UUI

Jh
5 Follow in Disassembler

3

¢ 42y Follow in Dump

l wiAr

ﬁ =" Dump Memory to File

We now have the unpacked file pulled from this temporary memory section, which
also has a valid IAT, but there's a catch: the executable still can't run because it'sin a
memory-mapped state. We can check by opening it with CFF:



pepsi_00330000 exe

_| Name Virtual Size Virtual Address | Raw Size Raw Address Reloc Address | Linenumbers | Relocations ... | Lin
00000160 00000168 000001BC 000001CO 000001C4 000001C8 000001CC 000001D0 oo
Byte[8] Dword Dword Dword Dword Dword Dword Word Wt
text 00003242 00001000 00003400 00000400 00000000 00000000 0000 oot
.rdata 000004E6 00005000 00000600 00003800 00000000 00000000 0000 00(
.data 00007384 00006000 00000200 00003EO0D 00000000 00000000 0000 00(
JFSKC 00009D9C 000DEDOD 0000SEOD 00004000 00000000 00000000 0000 00(

This section contains:

Code Entry Point: 00001348

oD ow P E

Of fset D1 2 3 4 5 6 7 8 9 A B C D E F Ascii

00000ESO ( OO0 OO OO0 00 OO OO0 00 OO OO0 0O OO 00 OO OO 00 OO | ................
00000BS0 | OO OO0 OO OO OO OO 0O 0O 0O 00 00 00 00 00 OO0 OO | ................
00000BAOD ( 00 OO OO0 00 OO OO0 00 OO 00 0O OO0 00 0O OO0 00 OO | ................
00000BEO | OO0 OO0 OO0 OO OO OO0 0O 0O 00 00 00 00 00 00 OO0 OO | ................
00000EBCO ( 00 OO OO0 00 OO OO0 00 OO 00 0O OO 00 OO OO 00 OO | ................
00000EBDO | OO OO0 OO OO OO OO0 00 0O 0O 00 00 00 00 00 OO0 OO | ................
00O000OEBEO ( 00 00 OO0 00 OO 00 00 OO 00 0O OO0 00 0O OO 00 OO | ................
00000BFO | OO OO0 OO OO OO OO OO 0O 0O OO OO OO OO OO OO 0O B
poooocoo | S5 8B EC 83 C4 BO 81 7D 0C 10 01 00 00 75 3F C7 URilaA 1R, . u?g
0oooocCio | 05 1D 61 40 00 7C 00 00 00 C7 05 25 61 40 00 00 1a@. | .. .Cl1%a@. .
pooooczo | 00 00 00 C7 0S5 21 61 40 00 02 00 00 00 FF 75 08 .Glla@ p .. yul
00000C30 ( E8 71 04 00 00 S0 E8 OB 01 00 00 64 00 64 2E 64 | eql..Pell..j.j.]
nonnnc4an i N1 FF 75 N8 ER& A9 N4 NN NN E9 F1 nNn nn nn 83 7D Ivulail AR 1

As we can see all the sections are misaligned.

To fix this, we need to realign all the sections so that the binary can be loaded
correctly by the Windows executable loader. This is done automatically by Scylla and
is called "unmapping the dump". We can proceed manually or with help of a tool
called Lord PE.

Let’s launch Lord PE, click on options, and put the check mark on the "Dumpfix"
item:

Rebuilder
Status window

Dumpfiz
Realign file...

normal
nice
hardcore
Wipe Relocation

Rebuild ImportT able
Validate PE |



Now click on “Rebuild PE” and choose our dumped binary. We confirm by clicking on
OK and we will have our executable realigned and fully functional!

We can verify that the various sections are now aligned correctly using CFF:

" pepsi_00330000_exe

.

| Name Virtual Size Virtual Address | Raw Size Raw Address |Reloc Address | Linenumbers | Relocations ...
00000138 00000140 00000144 00000143 0000014C 00000150 00000154 00000158
Byte[8] Dword Dword Dword Dword Dword Dword Word
Jtext 00004000 00001000 00003242 00000000 00000000 0000
.rdata 00001000 0000S000 000004E6 00003600 00000000 00000000 0000
.data 00003000 00006000 000001BE 00003C00 00000000 00000000 0000
Jrsrc 00009D9C 0000EOQOD 00009D9C 00003E0D 00000000 00000000 0000

This section contains:

Code Entry Point: 000013A8

BB W P =

Offset | 0 1 2 3 4 & 6 7 8 9 & B C D E F | Ascii
00000000 | 55 8B EC 83 C4 BO 81 7D OC 10 0L 00 00 75 3F C7 | URLNA 03001, u?G
00000010 | 05 1D 61 40 00 7C 00 00 00 C7 05 25 61 40 00 00 | 11a@.|...Cl%a@. .
00000020 | 00 00 00 C7 05 21 61 40 00 02 00 00 00 FF 75 08 | ...CHla@ I...ul
00000030 | E8 71 04 00 00 50 E8 OB 01 00 00 64 00 6A 2E 6A& | eégl..Pell..j.3.3

Everything is aligned correctly.




Conclusion

We have completed the analysis of this packer and documented three different
methods of unpacking.
In summary, Pepsi does the following:

1) An area of memory is allocated for temporary use and the unpacked
executable is extracted inside it (without the IAT, at the moment)

2) With the information contained in this memory area, the address of the OEP is
calculated and temporarily saved. The IAT is also created and written to this
memory area.

3) The Resource Directory information (VA and size) are extracted from the
header of the unpacked executable and written to the Pepsi header.

4) The unpacked executable (starting from 0x1000) is copied to the .pepsi
segment.

5) The memory area where the unpacked executable resides is cleaned and
freed.

6) The OEP is called, and the execution of the original program begins.

Considering this is SlicK's first attempt at creating a packer, | can only congratulate
him &

Credits

As always, | would like to thank the authors of the tools used in the document.
Special thanks go to SlicK for creating Pepsi and Xylitol for creating this unpackme.

Thanks also goes to you who read this paper! | hope you have enjoyed the analysis :)
If you have enjoyed this document and want to read more about unpacking,

malware analysis and reverse engineering, visit my site:
https://www.lucadamico.dev/

Luca


https://www.lucadamico.dev/

